Edit your profile

Moffat, Anthony F.J.

Full Professor

Contact:

  • Telephone 514-343-6682 Pav. PAVILLON ROGER-GAUDRY \ Ext. B422
Moffat, Anthony F.J.

Research expertise

Massive stars comprise all those with an initial mass exceeding 8 solar masses, and which collapse upon themselves as supernovae at the end of their nuclear "burning" lives, leaving neutron stars or black holes. Since the light produced by a normal star is roughly equivalent to the cube of its mass, a single star of 100 solar masses can emit the equivalent of one million suns. Beyond 20 solar masses, massive stars are distinguished by their strong winds, which can be up to one billion times stronger than that of our Sun, which we already consider quite strong (comets, auroras, etc.). Although they are rare and short-lived, massive stars emit enormous amounts of radiation, most of it in deadly ultraviolet, and matter enriched with heavy elements, into the interstellar environment, ready to form even more generations of stars and planets such as Earth. This process was especially important early in the life of the Universe, when the very first stars were forming, all of them very massive. My research is aimed mainly at exploring: (1) whether the pressure of radiation alone is enough to accelerate the extreme winds of pre-supernova stars, i.e. during the He-burning phase as Wolf-Rayet stars, using the first Canadian spatial telescope on the MOST microsatellite, (2) building a system of microsatellites (BRITE-Constellation) to examine the very low variability of a large sample of luminous stars, (3) how exactly winds accelerate around luminous, hot stars, (4) the role of magnetic fields in accelerating their winds, (5) the mystery of how dust forms and survives in the hostile environment of luminous, hot stars, (6) the upper limit for the most massive stars (100, 150 or 200 solar masses in the current Universe?), (7) the number of WR stars in our entire Galaxy, most of them hidden by interstellar dust, and (8) whether WR stars really do explode into supernovas, leading in some cases to the most energetic (albeit short-lived) phenomenon in the Universe, gamma ray bursts.

Areas of expertise

Directed theses and dissertations available in Papyrus

News